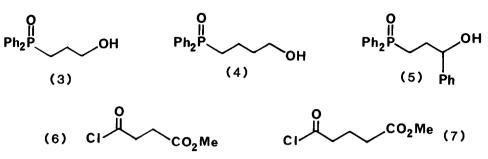
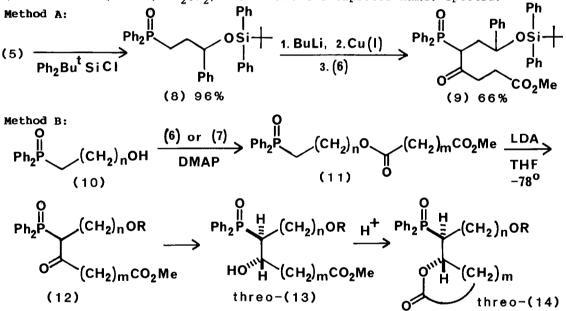

Tetrahedron Letters, Vol.27, No.2, pp 259-262, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

STEREOCHEMICALLY CONTROLLED SYNTHESIS OF UNSATURATED HYDROXY-ACIDS BY THE HORNER-WITTIG REACTION

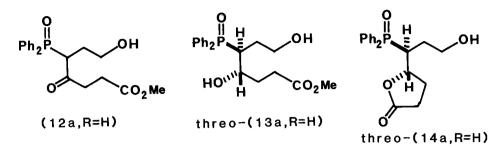
Nicholas Greeves and Stuart Warren* University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

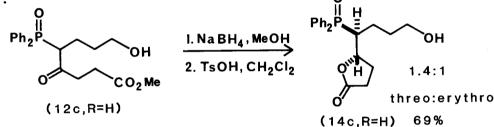

 α -Ph₂PO-Ketones containing OH and CO₂R groups are stereoselectively reduced by NaBH₄ under CeCl₃ catalysis to give Horner-Wittig intermediates for the synthesis of <u>E</u>-isomers of unsaturated hydroxy-acids.

We have described the synthesis of single isomers (\underline{E} or \underline{Z}) of unsaturated alcohols^{1,2,3} and unsaturated acids⁴ by the <u>threo</u>-selective reduction of α diphenylphosphinoyl(Ph₂PO-)ketones (1) and the stereospecific elimination of Ph₂PO₂⁻ from the pure crystalline intermediates (2). We now describe the synthesis of α -Ph₂PO-ketones containing both functional groups [R¹ in (1) having a hydroxyl group and R² having a carboxyl group], their stereoselective reduction, and the synthesis of unsaturated hydroxyacids. Related Wittig reactions have been used to synthesise leukotriene B analogues,^{5,6} and related compounds are available by other methods.⁷

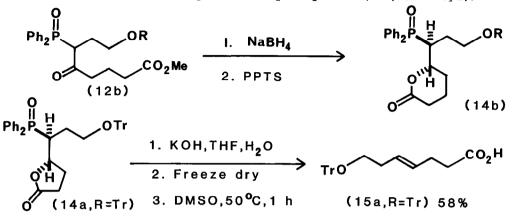


C-Acylation of the ω -Ph₂PO-alcohols (3-5) can be achieved (table 1) either by protection (t-BuPh₂SiCl) and reaction of the copper derivative⁴ with the half ester-half acid chloride (6), or by O-acylation of the alcohols (3-5) with (6) or (7) catalysed by 4-dimethylaminopyridine (DMAP) followed by O>C acyl transfer³ initiated by three equivalents of LDA. Remarkably, the second ester group in (11) does not interfere with this reaction.


Table 1: Synthesis of Keto-Esters (12)							
Starting	Acylating				Yield (%)		Yield (%)
Material	Agent	n	m	Method	(8)/(11)	Product	(12)
(3)	(6)	2	2	в	100	(12a)	78
(3)	(7)	2	3	В	98	(12b)	71
(4)	(6)	3	2	В	91	(12c)	69
(4)	(7)	3	3	в	84	(12d)	61
(5)	(6)	а	2	А	96	(9)	66
(5)	(6)	а	2	в	98	(17)	79
a. see diagrams	(5), (9),	and	(17).				

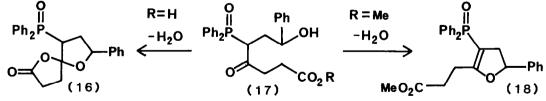

The acyl transfer products (l2; R=H) exist partly as hemiacetals (n.m.r.) and form enol ethers readily. Even dissolving (l2; R=H) in $CDCl_3$ gives the enol ether unless the $CDCl_3$ is first passed down a column of alumina. These hydroxy-ketones (l2) are best characterised as their 3,5-dinitrobenzoates (acid chloride, DMAP, CH_2Cl_2) which have the expected n.m.r. spectra.

Stereoselective reduction of the ketones (12) and purification of the products before Horner-Wittig elimination presented some problems.⁸ Reduction of the hydroxy-keto-ester (12a) with NaBH₄ in MeOH gave (13a) which cyclised easily (TsOH, CH₂Cl₂, room temperature) to the lactone (14a) in 64% overall yield and moderate (2.2:1 in favour of <u>threo</u>) stereoselectivity. However, neither (14a) nor its sily1 (t-BuMe₂Si or t-BuPh₂Si) ethers nor its <u>p</u>-nitrobenzoate could be separated into diastereoisomers by chromatography. Fortunately NaBH₄/CeCl₃, introduced by Luche⁹ for the regioselective reduction of enones, gave high <u>threo</u> selectivity at -78 °C so that crystalline <u>threo</u>-(14a) could be isolated in 77% yield. From a more detailed analysis of analogous compounds, it appears that the free alcohol is essential for this effect, which may arise from the combination of a bulky reducing agent¹⁰ and chelation of Ce³⁺ by OH, CO, and PO. As far as we are aware, this is the first example of NaBH₄/CeCl₃ giving high stereoselectivity in acyclic systems.¹¹


With the longer hydroxyalkyl chain (n=3), reduction of the keto-esters was again not very stereoselective, e.g. (l2c; R=H) gives (l4c; R=H) with l.4:1 <u>threo</u> selectivity. Addition of CeCl₃ gave a lower yield and worse stereoselectivity and other reagents (table 2) gave an improved stereoselectivity but low yields. The lactones could not be separated, even by h.p.l.c . **Q**

With the longer acid chain (m=3), the lactones do not form so easily, but treatment of the intermediates (13b, d) with pyridinium toluene-p-sulphonate (PPTS) gave good yields of lactone (14b, d) without epimerisation. In this series a protected version of the alcohol (12b; R=t-BuPh₂Si) was reduced in the presence of CeCl₃ with a 4:1 <u>threo</u> selectivity and 52% of crystalline (14b, R=t-BuPh₂Si) could be isolated. Cerium has no effect in two series: (12b, R=trityl) gave a 2:1 selectivity and with both side-chains longer (n=m=3), (12d, R=H) gave with or without CeCl₃ a 2.5:1 selectivity.

Table 2: Stereoselective Reductions of Keto-Acid Derivatives (12) threo:^a Yield Reducing Starting Material erythro Product (8) Agent Compound R 64 2.2:1 (14a) (12a) Н NaBH_A 77 >20:1 NaBH4, CeCl3 (14a) 2:1 (13b) 94 NaBH₄ (12b) Τr NaBH₄, CeCl₃ 80 2:1 (13b) 1.8:1^b 99 (13b) t-BuPh₂Si NaBH₄ 4.1:1^b 65 (14b) NaBH4, CeCl3 1.4:1 (14c) 69 NaBH₄ (12c) н 1.2:1 51 NaBH₄, CeCl₃ (14c)17 1.8:1 $Zn(BH_4)_2$ (14c)33 3.5:1 LiAl(t-BuO)₃H (14c)(13d) 97 2.5:1 NaBH₄ (12d) н (13d) 100 2.5:1 NaBH₄, CeCl₃ a. Ratios by n.m.r. integration. b. Ratio by h.p.l.c.


The final eliminations of $Ph_2PO_2^-$ can be carried out directly on the lactones using the methods developed for the acids,⁴ but isolation of the products is difficult. It is better to protect the OH group as a trityl or silyl ether (or to use previously protected materials in the reductions). Thus (14a; R=trityl) gave the protected hydroxy-acid (15a, R=trityl).

We thank S.E.R.C. and Glaxo Group Research (Ware) for a CASE award, and Dr Eric Collington for many helpful discussions.

References

- A.D. Buss, N. Greeves, D. Levin, P. Wallace, and S. Warren, <u>Tetrahedron</u> Lett., 1984, 25, 357.
- 2. P.S.Brown, A.B.McElroy, and S.Warren, Tetrahedron Lett., 1985, 26, 249.
- 3. P. Wallace and S. Warren, Tetrahedron Lett., 1985, 26, 5713.
- 4. D. Levin and S. Warren, Tetrahedron Lett., 1985, 26, 505.
- R. Zamboni and J. Rokach, <u>Tetrahedron Lett.</u>, 1983, 24, 999; B.J. Fitzsimmons and J. Rokach, <u>Ibid.</u>, 1984, 25, 3043.
- 6. E.J. Corey and W. Su, Tetrahedron Lett., 1984, 25, 5119.
- 7. E.J. Corey, K. Kyler, and N. Raju, Tetrahedron Lett., 1984, 25, 5115.
- 8. Compounds (17) derived from (5) with an extra chiral centre have a marked tendency to form cyclised products such as the enol ether (18) and the spiro ketal-lactone (16), and will be described in the full paper.

9. A.L. Gemal and J.-L. Luche, <u>J. Am. Chem. Soc.</u>, 1981, 103, 5454.
10. A.B. Smith, B.H. Toder, R.E. Richmond, and S.J. Branca, <u>J. Am. Chem.</u> <u>Soc.</u>, 1984, 106, 4001, and references therein.

11. For related effects on ketones having an Q-dibenzophosphole-5-oxide group, see J. Elliott and S. Warren, submitted to <u>Tetrahedron Lett.</u> (Received in UK 5 November 1985)